Tag Archives: Solar Cell

Flexible Photovoltaic Technology: Its features, benefits and Applications

Flexible Photovoltaic Technology is technology of research levels. It was example of one that had been created at Massachusetts Institute of Technology. In this solar cells were manufactured by deposition of photovoltaic materials on substrates that are flexible like ordinary paper. There is also usage of chemical vapour deposition technologies. Manufacturing technologies of solar cell on paper had been developed by researchers group from National Science Foundation and Eni-MIT Alliance Solar Frontiers Program.

Features: Photovoltaic organic circuit materials have been deposited in 5 layers on substrates of ordinary paper in vacuum chambers. This is done by conformal coating of conductive electrode polymer with chemical oxidative vapours. Process is called chemical vapour deposition. Solar panels of this kind have capabilities of voltage production which exceeds 50 V. This in turn power appliance normally at lighting conditions. Solar cells are shown also being flexible. Conductive solar cells grids are same as inkjet photo printouts with rectangles patterned. When leads have been attached to substrates electrically, it has to be shown to electrical power appliances. “Printing” costs (as described by MIT) is claimed for being same as photo inkjet printing. The technology makes use of vapour deposition temperatures being less than 120 degrees. This becomes easy for manufacturing on ordinary papers. Panel’s current efficiency is nearly 1%. Researchers hope for improvement in near futures. Testing: Circuits were tested also by deposition of photovoltaic materials on (PET) polyethylene terephthalate substrates. PET sheets were unfolded and folded 1000 times. No over ting performance deterioration had been observed. There are photovoltaic materials common being deposited on deteriorated PET with only 1 fold. Solar cell was passed also by means of laser printing for demonstrating performance continued after exposures to temperatures somewhat high. It still retains procedural characteristics.

Benefits: In solar panels conventionally, panel’s supporting structures like brackets and glass are 2 times more costly as materials of photovoltaic being manufactured on them. Paper in turn costs 1 thousandth of glass approximately. Solar cells use printing process. This is much cheap than solar panels conventionally. Different methods also which involves coating papers along with material includes 1st paper coating with smooth materials for counter acting molecular scale’s paper rough. But in this process, photovoltaic materials are directly coated onto paper untreated.

Applications: In case solar cells achieve in turn sufficient maturity technologically, they are used as window shades and wall papers for electricity production from lighting room. They also can be manufactured on the clothing. This can be used for charging portable devices electronically such as media players and mobile phones. Solar flexible modules are used on roofs curved or on those roofs where there is no sense of installing rack mounting systems.

Disadvantages: For lasting more than 20 years outdoors being having elements exposure, solar cells are finished with front sheets of thermoplastic olefin or UV resistant fluoropolymer instead of glass being used in solar cells conventional. This is less costly comparatively. Solar cells should be sealed such that oxygen and water do not enter and destroy cells by means of oxidative degradation. Photovoltaic solar cell: Solar panels are imagined when one thinks of solar power (polycrystalline and monocrystalline). Flexible photovoltaic technology is composed not of highly silicon refined crystals. But instead it is 1 continuous material. 4 types of (TFPV) thin-film solar photovoltaic being classified by photovoltaic materials are used. TFPV principle is same as crystalline PV. Light strikes material. It excites electrons. Then flow by means of p-n junction permutation, thereby generating electricity’s that is utilized and captured.

There are amorphous silicon (aSi) solar photovoltaic cells: This was developed in seventies. It was made from silicon’s non-crystalline form.

Introduction to Solar Power Technology

Solar Power is conversion of sunlight to electricity, directly either using (PV) Photovoltaic or indirectly using (CSP) concentrated solar power. Systems of concentrated solar power use mirrors or lenses and tracking systems for focusing large sunlight area to small beams. Photovoltaic converts light to electric current by utilizing photovoltaic effects. Photovoltaic was solely initially used as electricity sources for medium and small sized applications. This is from calculators powered by 1 solar cell to homes remote being powered by rooftop off-grid PV system. As costs of solar electricity falls, numbers of grid connected PV solar systems have grown to millions. Utility scaled solar power stations with megawatts in hundreds are built. PV solar is rapidly becoming low carbon, inexpensive technology for harnessing renewable energies from Sun.

Emerging technologies after photovoltaic cell (PV cell) or solar cell: Concentrator photovoltaic (CPV): This system employs sunlight being concentrated onto surfaces of photovoltaic for purposes of electrical power productions. Opposite to conventional PV systems, it uses curved mirrors and lenses for focusing sunlight to small, but too much highly efficient multi- junction solar cell. Solar concentrators of many varieties are used. These are mounted often on solar trackers for keeping focal points on cells with movement of sun across sky. Luminescent Solar Concentrators plus PV solar cell is regarded as CPV system. CPV are useful because they improve PV solar panels efficiency drastically. Floatovoltaics: This is emerging form of the PV systems which floats on surfaces of tailing ponds, irrigation canals, quarry lakes and water reservoirs. This system in turn reduces requirement of land area valued and drinking water saved. This water could be lost by means of evaporation. Then there is showing of high efficiencies of solar energy conversions. This is as panels have been kept at cool temperatures than their presence on land. Hybrid Systems: This combines CSP and CPV with each other or with different forms of generations like biogas, diesel and wind. Generation’s combined form enables systems modulating power outputs as demanding functions or reducing at least fluctuating solar power natures and consumption of fuel non-renewable. These hybrid systems are often found on islands.

CSP/CPV system: Novel solar CSP/CPV hybrid system is proposed. It combines concentrator photovoltaic with non-PV technologies of concentrated solar powers. This is called also concentrated solar thermal. ISCC system: There is combination of CSP with gas turbines. In this, 25 megawatt CSP parabolic trough arrays supplement much large 130 megawatt combined turbine cycle gas plant. PVT system: This is Hybrid PV/T system. It is called Photovoltaic Thermal Hybrid Solar Collectors. This converts solar radiations to electrical and thermal energy. This system combines Solar PV modules with solar thermal collectors in complementary ways. CPVT system: It is Concentrated Photovoltaic Thermal Hybrid system being same as PVT system. This utilizes concentrated photovoltaic (CPV) in place of conventional PV technologies. This combines it with solar thermal collectors. PV diesel system: This combines PV system with diesel generator. Combination with different renewables has been possible that includes wind turbines. PV-thermoelectric system: Thermovoltaic, thermoelectric devices convert temperature differences in between dissimilar materials to electric currents. Solar cells use high frequency radiation parts only. Low frequency heat energy is wasted. Plenty of patents regarding use of the thermoelectric devices in solar cell’s tandem have been filed. Idea is increasing efficiencies of combined thermoelectric/solar system for converting solar radiations to useful electricity.

Parabolic trough in turn consists of linear parabolic reflectors which has concentration of light to receivers being positioned through focal line of reflector. Receiver is tube being positioned just right above middle of parabolic mirrors. This is filled with working fluids.

2013 Copyright techgo.org, All right reserved || Privacy Policies, Terms and Disclaimer

Website Administered by MISH IT SOLUTIONS